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I. OVERVIEW

Flexoelectricity is a biophysical phenomenon that provides a reciprocal

relationship between membrane curvature and polarization, thus enabling

various membrane structures to function like mechanoreceptors. Experi-

mental evidence of biomembrane flexoelectricity (including direct and con-

verse flexoelectric eVect) is reviewed. Mechanotransduction by flexoelectric

membranes, either channel‐free or channel‐containing, is underlined.

II. INTRODUCTION

Flexoelectricity is a mechanoelectric property of liquid crystals similar to

the piezoelectric eVect in solid crystals (Meyer, 1969). In most liquid crystals,

an applied electric field may induce an orientational distortion of the local
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directors due to flexoelectricity. Conversely, any distortion of the director

field will induce a macroscopic polarization within the material. In biologi-

cally manifested liquid crystal structures like biomembranes, flexoelectricity

provides a reciprocal relationship between membrane curvature and polari-

zation (Petrov, 1975), thus enabling a curvature‐induced polarization (direct

flexoelectric eVect) or an electric field‐induced curvature (converse flexoelectric

eVect).
On the other hand, mechanotransduction is the process by which cells

convert mechanical stimuli into electrical or biochemical signals. The prob-

lem is how mechanical stresses are converted into biological signals and

physiological responses [for reviews see Ingber (1997), Hamill and Martinac

(2001), Orr et al. (2006)]. Much of the research on mechanotransduction in

eukaryotes has been conducted on specialized cells whose main function is to

sense and respond to mechanical stresses. These specialized cells include hair

cells of the inner ear and cutaneous touchsensitive neurons. The identity of

the molecules and structures that mediate mechanotransduction in these

cells remains elusive. Liquid crystal physics oVers an universal mechano-

transducting mechanism, the flexoelectricity. A cell membrane can perform

as a whole like a mechanosensor due to flexoelectricity. On the basis of the

speed of mechanosensitive cells’ depolarizations, however, it is almost cer-

tain that they must also possess cation channels that are mechanically gated.

Since 1983 such channels have been discovered in a great variety of cells and

they appear today ubiquitous (Hamill, 1983; Brehm et al., 1984; Guharay

and Sachs, 1984; Morris, 1990; Sachs, 1990). This far, the role of flexoelec-

tricity is not so evident. It is the main subject of the present chapter.
III. FLEXOELECTRICITY, MEMBRANE CURVATURE, AND POLARIZATION

Flexoelectricity is well understood in liquid crystal physics (De Gennes,

1974). In the special case of a two‐dimensional liquid crystal membrane,

flexoelectricity means either curvature‐induced membrane polarization or

electric field‐induced membrane curvature. In the first case (Petrov, 1975,

1999):

Ps ¼ f ðc1 þ c2Þ: ð1Þ
Ps is the electric polarization per unit area in C/m, c1 and c2 are the two

principal membrane curvatures in m�1 (where c1 ¼ 1/R1 and c2 ¼ 1/R2;

Fig. 1), and f is the area flexoelectric coeYcient in C (Coulombs), typically a

few units of electron charge. The flexocoeYcient is regarded positive if

polarization points outward the center of curvature (Fig. 1). This eVect is
manifested in liquid crystalline membrane structures because a curvature of



FIGURE 1 The logo of the 1st and 2nd Flexoelectric Congresses (SUNY‐BuValo, 2001 and

Rice‐Houston, 2003). On the right, flexoelectric (curvature‐induced) polarization of a membrane

Ps and sign convention about flexocoeYcient f: for the case shown f will be positive. R1 and R2

are principal radii of membrane curvature. On the left, schematic representation of an outer hair

cell (OHC) which lateral membrane is supposed to act as a flexoelectric motor (cf. Fig. 11). After

Petrov et al. (1993; Fig. 1) with permission from the Publisher.
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membr ane surface leads to a liqui d crystal de formati on of splay type of

lipid s and protei ns. Thes e are otherwis e orient ed parallel to each other along

the local membr ane normal in flat state. Accor ding to the Helm holtz equa-

tion, an electric potential diV erence appears across a polari zed surface. In
view of Eq. (1), the curvat ure ‐ depen dent part of this potentia l di Verence is:

Uf ¼ Ps

e0
¼ f

e0

� �
ð c1 þ c 2 Þ: ð 2Þ

This is the exp ression of the direct fle xoelectric e Vect. By measur ing the

total cur va ture and the c urv ature ‐induced potential diVe rence , w e can dete rmine

the flexoelectric coeYcient of a ny giv en membra ne .

Like piezoel ectricit y of so lids, flexoelect ricity is also manifest ed besides a

direct e Vect [ Eq. (1)] also by a converse e V ect, feat uring electric fie ld‐ indu ced
curvat ure (Pet rov, 1999 ):

c1 þ c 2 ¼ f

K

� �
E ; ð 3Þ

wher e E is the trans membra ne elect ric field and K is curvat ure elast ic

modu lus. Eq. (3) is vali d for a tensi on‐ free membr ane (ident ically zero lateral

tensi on), whi ch is the case in an osmotical ly ba lanced c ell.

Explori ng molec ular mecha nisms of fle xoelectric ity is a cen tral task of the

liquid crystal approach in the membranology (Petrov and Derzhanski, 1976;

Petrov et al., 1979; Derzhanski, 1989; Petrov, 1999, 2001). Flexoelectric
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coeYcient can be represented as an integral over the curvature derivative of

the distribution of normal component of polarization across the membrane

(Petrov, 2001). Model distributions including electric monopoles, dipoles,

and quadrupoles of lipids and proteins have been considered (Derzhanski,

1989; Petrov, 1999), revealing their respective contributions to the total

flexocoeYcient f:

f ¼ fM þ f D þ f Q; ð4Þ
where the relative amounts of the contributions are dependent on the molec-

ular structure of lipids/proteins and the ionic conditions of the bathing

electrolyte. For a membrane that is asymmetric in its flat state, flexoelectricity

will add a curvature‐dependent component to its total polarization.
A. Flexoelectricity and Membrane Lipids

1. Dipole Mechanism of Flexoelectricity

In the curvature elasticity theory of lipid bilayers, a distinction is made

between connected and unconnected bilayers (Petrov, 1999). The term

‘‘connected bilayer’’ refers to the case in which restrictions along the edges or

boundaries or internal restrictions do not allow for the monolayers con-

stituting the bilayer to slide freely one over another (or time is not enough to

do so). The term ‘‘unconnected bilayer’’ refers to free monolayers that slide

freely on each other at bending according to their relative area changes with

no boundary restrictions. These two cases are considered separately:

a. Dipolar Flexoelectricity of Connected Bilayers: Blocked Lipid Exchange.

In a symmetric connected bilayer, the neutral surface coincides with the mid‐
surface, therefore the outer monolayer (o) is expanded while the inner (i) is

compressed as a whole. The change of lipid packing to more loose in the

outer monolayer and to more compact in the inner one will lead to confor-

mational changes in the headgroups and, most notably, in the structure of

the polarized interfacial water. As a result, the normal components of the

dipole moments per head in the two monolayers (mo; mi) will change, in

opposite directions at that. Simultaneously, the area density of dipoles over

the two interfaces will change as well. In this way, a dipole imbalance with

respect to the mid‐surface will arise and the symmetric bilayer will become

polarized with a flexocoeYcient (Petrov, 1999):

f DB ¼ m0
A0

� dm
dA

����
A0

 !
d; ð5Þ
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where � is the total normal component of dipole moment per lipid head

(polarized water including) and A is the area per lipid head. The superscript

DB means the dipolar blocked contribution and the subscript 0 refers to the

corresponding values in the flat membrane state. All values in Eq. (5) could

be inferred from measurements of surface potential in lipid monolayers. For

asymmetric bilayers, the sum of two corresponding expressions of the type

(5) for each of the monolayers holds.

b. Dipolar Flexoelectricity of Unconnected Bilayers: Free Lipid Exchange.

Unconnected bilayer bending proceeds in such a way that each monolayer is

bent around its own neutral surface; relative slippage of the twomonolayers is

taking place so that both neutral surfaces remain unstretched and each area

per lipid there equals A0, the area over the mid‐surface in flat bilayer state.

If the distance from the monolayer’s neutral surface to the headgroups’

surface is dH, a residual stretching/compression will take place in the region

of bilayer interfaces, numerically equal to the stretching/compression of a

thinner bilayer, of thickness 2dH. Consequently, the unconnected flexoco-

eYcient f DF of a symmetric bilayer is immediately obtainable from Eq. (5)

by replacing d with 2dH. We have established an equivalence between the

elastic behavior of a connected bilayer and a bilayer with both lateral and

transbilayer lipid diVusion being blocked, while the case when any of these

blocks is lifted is equivalent to the behavior of an unconnected bilayer

(Petrov, 1999). Therefore, we can claim that f DF represents the free lipid

exchange contribution as well. For a bulk elastic model of the membrane

dH ¼ d=4, that is, f DF ¼ f DB=2. If, on the other hand, chain elasticity is

vanishing, neutral surface would coincide with the surface of dipoles, that is,

dH ¼ 0 and f DF � 0. In any case, the free dipolar contribution is less than

the blocked one.

c. Flexoelectric Polarization and Transmembrane Voltage DiVerence.
Estimation of Dipole Contribution. Eq. (5) can be rearranged as:

f DB ¼ �e0A0d
dð�VÞ
dA

����
A0

; ð6Þ

where �V ¼ �/e0 and A is the surface potential for a lipid monolayer. The

corresponding expression with 2dH instead of d holds for free lipid

exchange.

Equation (6) can be used to esti mate f D ( Petrov, 1999 ). For a DPPC

monolayer it follows that fDB ¼ 1.2 � 10�20 C. Correspondingly, fDF will be

about two times lower. From another set of experimental data for DPPC, we

obtain fDB ¼ 1.4 � 10�20 C, in good agreement with the previous estimate.
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Slightly higher value for fDB is obtained for DPhPC: fDB ¼ 1.7 � 10�20 C.

From the same work, it can be inferred that adsorption of PEG on DPhPC

monolayers or introduction of PEG‐grafted lipids in the monolayer leads to

the appearance of extended ranges with an opposite sign of the surface

potential derivative: dð�V Þ=dA > 0. This means, according to Eq. (6), that

PEG‐lipids can reverse the sign of dipolar flexocoeYcient from positive to

negative.

2. Monopole Mechanisms of Flexoelectricity

If the lipid molecules comprising a BLM are electrically charged (with

partial charge per head be), two separate situations may be considered

leading to diVerent flexoelectric coeYcients.

a. Detailed Electric Neutrality. If, after curving, each membrane side

remains electrically neutral (surface charge being neutralized by the diVuse
layer of counterions), the situation is qualitatively identical to the dipolar

lipid model described above. In the low surface potential, limit corres-

ponding monopole flexoelectric coeYcient is easily obtainable from Eq. (5)

by replacing the permanent dipole moment, �, with the eVective dipole

moment of the diVuse electric double layer mD ¼ bel=ew, where b is the

degree of ionization per lipid head. The Debye screening length lD gives

an eVective distance from the charged lipid heads to the diVuse layer of

counterions.

Let us consider now the degree of ionization, b, as area dependent, b(A).
Possible reasons for a nonzero derivative, db/dA, could be variations of the

adsorption/desorption of counterions and a shift of the proton equilibrium

over the membrane surfaces due to the change of the available area and/or

packing‐induced changes of the polar head conformation. Such conforma-

tional changes will, in turn, change the accessibility of the charged groups for

protons and counterions. With respect to protons, this could be expressed in

terms of a curvature‐induced shift of the surface pKa values of the ionizable

groups over the membrane surface. Bearing in mind that double layer

dipoles are centerd at a distance lD/2 away from the membrane surface,

we obtain for a blocked lipid exchange:

f CB ¼ e

ew

b0
A0

� db
dA

����
A0

 !
lDðd þ lDÞ; ð7Þ

where subscript 0 refers to the flat membrane state. The expression for a free

lipid exchange coeYcient f CF is obtained by replacing d with 2dH.
Note that fDB in Eq. (5) has a positive signs if � points toward the

nonpolar membrane core (the usual case found in lipid monolayers by
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surface potential measurements) and that f CB in Eq. (7) bears the sign of b
(i.e., the sign of the surface charge). Therefore, for negatively charged lipids

(the usual case with biologically relevant lipid molecules), both contributions

to f ( f D and f C ) have diVerent signs and tend to reduce each other. Since

lD is one order of magnitude larger than the length of the permanent dipoles

(ca. 1 nm at 0.1 M ionic strength), the charge contribution would be expected

to be larger than the dipolar one. However, double layer dipoles are situated

in a highly polar medium that is accounted for here by ew � 30. Therefore,

the two contributions are of the same order of magnitude (Derzhanski,

1989). In fact, surface potential measurements even demonstrate that a

permanent dipole contribution prevails at a lower degree of ionization.

Eq. (6) permits us also to relate the sum of f C þ f D to surface potential

variations. If, instead of � we take mþ mD, then Eq. (6) will hold again,

this time with �V ¼ �d þ �S (Fig. 2). Typically, in the range of 70 Å2,

d�V/dA ¼ �6 � 1017 V/m2. With d þ lD ¼ 6 nm, we then get f CB þ f DB ¼
2.2 � 10�20 C.
∆V i

∆Vo

U f

Φι
d

Φi 
s

Φo
d

Φo
s

FIGURE 2 Distribution of electric potential across a flat (solid line) and a curved (broken

line) bilayer lipid membrane. The membrane is composed of lipids carrying surface charge

and permanent dipole. The curved potential distribution corresponds to a zero transmembrane

current clamp (i.e., open circuit) measuring conditions (in other words, to zero intramembrane

field). �V is the total monolayer surface potential (measurable in a Langmuir trough); �d is

the dipolar potential;�S is the double layer surface potential; the superscripts i and o stand for the

inner and outer monolayer, respectively. Uf is the curvature‐generated (flexoelectric) potential

diVerence. From Todorov et al. (1994a) with permission from the publisher.
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We sho uld note that Eq. (7) is strictl y valid at low surface pot entials, that

is, at low parti al charge per head ( bð % Þ < 5: 8=lD ð nm Þ ), when Graham e and

Poi sson–Bolt zmann equ ations can be linea rized. Dir ect calculati on of the

vo ltage di V erence across a spheri cally cu rved bilay er by solving the linear-
ized Poisson–Bo ltzmann eq uation ( Hristova et al ., 1991 ) con firms the valid-

ity of Eq. (7) under the ad ditional requir ement R � lD that is always

fulfil led at high enou gh ion con centration. The influence of the ad sorption /

desorption of monovalent and multivalent counterions has also been analyzed

using the Langmuir adsorption model (Hristova et al., 1991, 1992).

By solving the nonlinear Poi sson–Bolt zmann eq uation for charged sym-

metr ic bilayers, a self ‐ consis tent e Ve ctive increa se of su rface charge de nsity
of the outer mon olayer (and an oppos ite in sign decreas e of the inner one)

was obtaine d ( Winte rhalter and Helf rich, 1992 ) for a cylind rically curved

bilay er (of cu rvature radius R ) as follows (assuming that the surfaces of

ch arges are neutral surfa ces for each of the mon olayers):

� s ¼ 2kB T

e
ew

q � 1

p

H

q þ H

1

R 
; ð 8Þ

wher e p ¼ se lD
2 ew k B T 

, q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ p2

p
, and  H ¼ eL

ew
2 lD
d

is the elect ric cou pling para-

mete r. Multiplyi ng these e Vecti ve charges by the membr ane thickne ss d, we

shall obtain an express ion for the area fle xoelectric polari zation in the

nonl inear case. In the limit p � 1 and with weak electric cou pling (H � 1),

the resulting exp ression for the flexo coe Y cient ( f ¼ ðeL =e w Þ sl2D ) closel y

resem bles the free co unterpar t of Eq. (7) with dH ¼ 0 (the surfa ce of the

ch arges is a neutral surface) and db=d A ¼ 0, ap art from an addition al factor

of eL in the nominat or.

b. Global Electric Neutral ity. If, by cu rving the membr ane, e Vecti ve
displ acement of elect ric c harges across the whol e membr ane thickne ss takes

place (e.g., an excess of negati ve ch arges over the exp anded outer surfa ce and

de ficiency over the compres sed inner surfa ce, equival ent to an excess positive

ch arge), this wi ll resul t in a sub stantial elect ric dip ole (of a lengt h d ), situated

in addition in a low polar medium (eL). Consequently, the curvature‐induced
voltage diVerence will be large. We shall denote here the corresponding flexo-

electric coeYcients by f M (monopole) in order to distinguish it from the case

of detailed electric neutrality.

This eVect, called a shift of surface charge equilibrium, was discussed in the

gen eral case of b 6¼ 0, db/d A 6¼ 0 (Petro v and Sokolov , 1986), an d subsequen t-

ly considered from a fundamental electrostatic point of view (Derzhanski,

1989) in a special case of an area‐independent degree of dissociation

(db/dA ¼ 0). The results again depend on blocked or free lipid exchange.
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The blocked one is again obtainable from Eq. (5), this time by replacing the

permanent dipole moment � with the eVective dipole moment of the surface

charges with respect to the bilayer’s mid‐surface: �bed=2eL:

fMB ¼ � e

eL

b0
A0

� db
dA

����
A0

 !
d2

2
; ð9Þ

while the free lipid exchange coeYcient f MF is obtained by replacing one

d/2 with dH.
Comparing Eq. (7) with Eq. (9), we see that it holds:

fM ¼ � d

2lD

ew
eL

f C ¼ � 1

H
f C ð10Þ

Consequently, the flexocoeYcients for the two monopole mechanisms

diVer in sign and, depending on the smallness of the coupling parameter

H, the diVerence in their magnitudes can reach about two orders, that is, fM

� 1 � 10�18 C. This clearly makes the second mechanism a leading one

for the monopole case. Furthermore, estimations from monolayer measure-

ments show that db/dA is making the most of the contribution. With

db/dA ¼ �5 � 1018 m�2, d ¼ 5 � 10�9 m, e ¼ 1.6 � 10�19 C, and eL¼ 2,

Eq. (11) yields fMB ¼ �5 � 10�18 C.

Let us also note the fact that most measurements of flexocoeYcients, in

the presence of even a low amount of surface charge (Petrov and Sokolov,

1986; Petrov 1999), reveal these characteristically higher values. Notably, the

eVect of db=dA is clearly predominant since b/A is about�2� 1017 m�2 only.

The mechanism of the shift of surface charge equilibrium implies that the

excess charges emerging on the two membrane surfaces compensate each

other across the membrane thickness, rather than being compensated by the

diVuse double‐layer counterions (Petrov and Sokolov, 1986). Indeed, if these

opposite‐in‐sign excess charges on the two membrane surfaces were dis-

tributed continuously, the electric field created by them will be confined

within the membrane capacitor.

For lipids that are both charged and dipolar, it is convenient to express the

sum of two contributions to the flexocoeYcient via the sum of the two

components to the surface potential (Fig. 2). For Debye lengths suYciently

shorter than a half the membrane thickness, we derived a simple expression

(Petrov and Sachs, 2002):

fM þ f D ¼ �e0A0

d

2

d�V i

dAi
þ d�Vo

dAo

� �
; ð11Þ
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whereA0 is the area per lipidmolecule. In Eq. (11), the charge (�o;i
S ) and dipole

(�o;i
d ) components of the double layer surface potential of the outer (o) and

inner (i) membrane surface are lumped into one:�Vo;i ¼ �o;i
S þ �o;i

d (Fig. 2).

The surface (Volta) potential�V is an experimentally measurable quantity in

monolayers on water/air or, more representable, for half a membrane, on a

water/oil interface.

Some final remarks concerning living membranes: Important feature of

biomembranes is the strongly heterogeneous lipid composition of the liquid

crystal membrane matrix. Studies of mixed lipid monolayers demonstrate

that the variation of surface potential as a function of the area diVers from
those of pure monolayers: depending on the composition, d�V/dA can

either be enhanced or weakened.
B. Flexoelectricity and Membrane Proteins

Integral proteins could provide a great contribution to the curvature‐
induced membrane polarization (Petrov, 1999). Both dipolar and quadrupo-

lar contributions could be demonstrated, even more pronounced than those

of the lipids. The reason for such an expectation is the very large dipole

moment measured for some proteins. Theory also demonstrates that such

big molecules with no spherical symmetry may have very large anisotropy of

the quadrupole moment so that quadrupolar flexocoeYcient f Q can be even

larger than 1 � 10�18 C.

Dipole contribution is preconditioned by free lateral diVusion of proteins.

This is a basic assumption in the Singer–Nicolson fluid mosaic model of

biomembranes. If a large number of conical and dipolar proteins are unidi-

rectionally oriented, they would accumulate in the curved membrane re-

gions, giving rise to an additional flexopolarization. Following Petrov

(1999) the resulting flexocoeYcient for this case is f PD ¼ 1.6 � 10�19 C.

Furthermore, monolayer measurements demonstrate the variations of

dipole moment of peripheral proteins at stretching/compression. According

to us, this implies the possibility of ‘‘bimorph’’ flexoelectricity of peripheral

proteins (an analogue of the piezoelectricity of a bimorph plate), especially if

these are symmetrically adsorbed over the two membrane interfaces, as

suggested in the Danielli‐Davson model.

The quadrupole contribution is mostly expected in membranes with

high protein concentration, where ordered arrays of integral proteins do exist

(Green et al., 1973). Examples of this type include the inner mitochondrial

membrane, the purple membranes of Halobacterium halobium, and so on.
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IV. EXPERIMENTAL RESULTS ON FLEXOELECTRICITY
IN BIOMEMBRANES

A. Theoretical Remarks

Consider a membrane whose total curvature changes in time: c1 þ c2 ¼ cðtÞ.
According to Eq. (2) that will induce a transmembrane voltage diVerence,
which at fast relaxation rate of the flexopolarization will follow the curvature

change instantaneously: �U ¼ ð f =e0ÞcðtÞ. It will also induce a displacement

current in the outer circuit I ¼ dðC0�UÞ= dt ¼ C0ð f =e0Þdc=dt, whereC0 is the

membrane capacitance. Both eVects aremeasurable under proper experimental

conditions (see below).

Assume now a membrane shape like a spherical segment of radius R:

c1 ¼ c2 ¼ 1=R, and membrane curvature harmonically oscillating in time:

c1 þ c2 ¼ cðtÞ ¼ 2cm sin ot, where o is the angular frequency of oscillations

and cm ¼ 1=Rm is the maximal curvature attained. Then, following Eq. (1)

we shall obtain a time‐dependent flexopolarization as well. This polarization

leads to a transmembrane AC voltage diVerence [Eq. (2)] that is a first

harmonic with respect to curvature oscillations and can be measured by two

electrodes connected to a very high impedance electrometer (open circuit, zero

current clamp). Its amplitude is Uf ¼ ð f =e0Þ2cm.
A displacement current due to oscillating flexopolarization can also be

measured by two electrodes that are eVectively shorted out via low imped-

ance ammeter (shorted circuit, zero voltage clamp). This displacement cur-

rent through the meter can be calculated by adopting an equivalent circuit,

containing an AC voltage generator Uf sin ot (describing the oscillating

flexoelectric voltage) and a capacitor C0: If ¼ d(C0�U )/dt. Its first harmonic

amplitude is then

If ¼ C0Ufo ¼ C0ð f =e0Þ2cmo ð12Þ
In this way, measuring Uf and cm, or If, C0, and cm, we can determine

experimentally the flexocoeYcient f. Evaluation of membrane curvature

cm of oscillating black lipid membranes can be performed electrically

from the second harmonic of membrane capacitance current under nonzero

voltage clamp (the ‘‘condenser microphone’’ eVect) and supposing spherical

curvature (Petrov and Sokolov, 1986). Actual curvature (c1 þ c2) of a BLM

can be measured interferometrically (Todorov et al., 1991, 1994a,b), both

for direct and converse flexoeVect. Patches of native membranes (see

below) would need a contrast microscopic imaging under stroboscopic

illumination.
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B. Experimental Data

1. Direct FlexoeVect of Native Membranes at Sine Pressure Excitation

The patch‐clamp method involves sealing of small patches of native mem-

branes at the tips of glass micropipettes by gentle suction of the precleaned

membrane. It is well described in the literature. Besides, a tip‐dip technique

was developed allowing for the formation of model phospholipid mem-

branes on patch‐clamp pipettes. Investigation of flexoelectric properties of

model and native membranes (Petrov et al., 1989, 1992, 1993) is a novel

application of the patch‐clamp technique. It is provided by the ability to

manipulate the patched membrane curvature on micrometer scale by varying

the pipette pressure. Theoretical analysis of the oscillating pressure tech-

nique as applied to patch‐clamp was performed (Petrov and Usherwood,

1994). It was concluded that a tension‐free, flaccid patch is essential for the

manifestation of substantial oscillating curvature. The eVect of patch tension

on flexoresponse has been demonstrated (Petrov et al., 1989).

Experimental setup was reported earlier (Petrov et al., 1989, 1992; Petrov,

2001). The first experimental demonstration of the flexoelectric response of a

native membrane from locust muscle was done in 1989 (Petrov et al., 1989)

using a single lock‐in amplifier. Accumulation and averaging of current

traces were also employed. Unlike model membranes native patches pro-

duced much noisier flexocurrents. Already at that time strong interference

from channel activity of membrane patches was observed, therefore a

channel‐free patch may be an advantage for such measurements. Apart from

the application of oscillating pressure, the membrane treatment and patch-

ing procedure closely followed the standard protocols. Patches in either

cell‐attached, inside‐out, or outside‐out configurations were studied. Tip

diameters could not exceed 1 mm, though, because with larger tips gigaseal

formation was precluded.

The data reported in Fig. 3 (Petrov et al., 1993) were obtained using a

double lock‐in amplifier with an inside‐out patch oscillating in the high

frequency range (150–500 Hz). Oscillation frequencies were selected at which

the standing waves of sound pressure were maximal at the pipette holder end

of the plastic tube. Keeping the oscillating pressure amplitude constant, a

linear increment of the first harmonic amplitude of 30 fA(rms)/Hz was

observed. An extrapolation of the amplitude–frequency relationship passed

through zero. Thus, this observation represented the displacement flexo-

electric current, Eq. (12). The evaluation of membrane curvature with

patches needed optical monitoring of patch geometry, because the ‘‘condenser

microphone’’ eVect is much weaker than with BLM. In the absence of such

optical imaging, we could only estimate the curvature radius as equal to



FIGURE 3 Flexoelectric recordings from an inside‐out patch excised from locust muscle

membrane in standard locust saline. Pipette resistance was 6.7 MO. Seal resistance was 0.5 GO.
Patch capacitance components were Cfast ¼ 7.5 pF and Cslow ¼ 0.8 pF. Upper traces: flexo-

electric response (F ) of the patch at three diVerent frequencies (345, 446, and 512 Hz) in the high

frequency range. Lower traces: driving pressure signals ( P). Current bar of 10 pA and pressure

bar of 5 torr apply to all measurements. Flexoelectric signals were strong enough to be directly

recorded from the List amplifier output. No voltage dependence of the first harmonic was

observed (i.e., patch oscillated around its flat state). At 345 Hz, with 2.4 torr(pp) driving

pressure a first harmonic flexoresponse of 9 pA(rms), phase �72 	  was observed. The control
pickup response after rupturing the patch and taking the pipette tip out of the saline was much

lower (0.23 pA) and had a completely di Verent phase (170	  ). Figure reprinted with kind per-
mission of Springer Science and Business Media from Petrov, A. G., Miller, B. A., Hristova, K.,

Usherwood, P. N. R. (1993). Eur. Biophys. J. 22, 289, Fig. 6. Copyright (1993) by the European

Biophysical Societies’ Association.
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the tip radius , that is, 0.7 mm (with an error allow ance of 50%). Then, we can

calcul ate for locust muscl e membr ane a flexoco e Y cient of 2.5 � 10 � 18

( � 50%) C, a quite substa ntial value (Petro v, 1999 ).
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FIGURE 4 (A) Averaged voltage response of an astrocyte inside‐out patch subjected to a

pulse sequence of 100 ms duration which alternates between �80 and þ80 torr, with averaging

of corresponding traces. Patch current is clamped to zero by the regime of fast current clamp

of the Axopatch 200B. Activated adult astrocytes were isolated as described in the text.

An Axopatch 200B (Axon Instruments, CA) was used for patch clamping, while experimental

protocols and data acquisition were controlled by Axon Instruments pClamp8 software via a

Digidata 1322A acquisition system. Voltages were sampled in the regime of fast current clamp of

the Axopatch 200B. All potentials are defined with respect to the pipette interior. Electrodes

were pulled on a Model PC‐84 pipette puller (Brown‐Flaming Instruments, CA), painted with

Sylgard 184 (Dow Corning Corp. Midland, MI) and fire polished. Electrodes were filled with

NaCl saline (NaCl: 140 mM; KCl: 5 mM; CaCl2: 2 mM; MgCl2: 0.5 mM; glucose: 6 mM; and

HEPES: 10 mM, pH 7.3) and had resistances ranging from 10 to 20 MO. Bath saline was

identical to pipette‐filling one. Pressure and suction were applied to the pipette by an HSPC‐1
pressure clamp (ALA Scientific Instruments, NY) controlled by the pClamp software. Pressures

are regarded positive and suctions negative. Up to 100 consecutive responses (voltages or

currents) to various pulse protocols were collected and averaged in real time. OV‐line data

analysis was performed with Clampfit and Origin 6.1 software. (B) Averaged voltage response of
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2. Direct FlexoeVect of Native Membranes at Pulsed Pressure Excitation

In the early studies reviewed above, oscillating pressures of various fre-

quencies from 20 to 600Hz have been used and the amplitude and phase of the

steady AC flexoelectric response currents has been measured, using lock‐in
amplifiers. In contrast, transient measurements of pulse‐elicited voltages and

currents of membrane patches were undertaken in recent investigation. An

accumulation and averaging routine of pulsed response traces was employed,

the number of individually applied pulses being up to 100. A control of

patch curvature was achieved by recording transients of capacitance changes

(Suchyna and Sachs, 2004).

Figure 4A displays the averaged voltage response of an astrocyte inside‐
out patch subjected to a pulse sequence of 100‐ms duration which alternates

between –80 and þ80 torr, with averaging of corresponding traces. Patch

current is clamped to zero. Negative pressure produces negative voltage

inside the pipette (head stage electrode), while positive pressure produces a

positive voltage. At switching on the pulse, a rapid jump of trans‐patch
voltage (rise time less than 1 ms) is followed by a gradual rise resulting in

a peak of 0.5–1.2 mV some 15 ms after pulse onset, dependent of pulse

amplitude. Furthermore, the voltage gradually decays to roughly zero value

at negative pulses in about 50 ms, while at positive value it tends to increase

again after passing through a minimum. This behavior may reflect the dissi-

pation of the voltage by a pressure‐induced trans‐patch current. The depen-

dence of elicited voltage amplitude on pulse amplitude reveals an initial linear

region, followed by a saturation at extreme pressures (probably due to a

saturation of patch curvature, see below). At switching oV the pulse, a rapid

jump of trans‐patch voltage (rise time less than 1 ms) of opposite sign to the

switching on is followed by a mirror image of the switching on transient with

respect to x‐axis.
Figure 4B demonstrates the voltage response of the same patch to negative

pressure pulses with constant amplitude of 80 torr, but starting from an initial

value varying betweenþ40 and –40 torr, that is, from a precurved patch state

to a state of same or opposite sign of curvature. The voltage response reveals a

striking dependence of the fast initial jump on the original and final sign of

curvature, being minimal when both are negative and maximal when switch-

ing from negative to positive one. That is, the fast initial jump is related to

a fast relaxation of patch curvature. Similar dependence is followed by the
an astrocyte inside‐out patch to negative pressure pulses of a constant amplitude of 80 torr, but

starting from an initial value varying between þ40 and �40 torr, that is, from a precurved patch

state to a state of same or opposite sign of curvature. Experimental conditions are the same as in

Fig. 3. Current is clamped to zero by the regime of fast current clamp of the Axopatch 200B

[Petrov (2006, Fig. 4) with permission from the publisher].
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slow part of the response so that traces are shifted roughly parallel to one

another in negative direction, while the moment of the initial peak of voltage

is shifted from the 2nd to 8th s for initial pressures ranging from –40 to þ40

torr. The fact that this peak time is minimum when the initial and final

curvatures have the same, negative sign, reveals that the peak is related to a

second, slower phase of patch curvature relaxation.

From these data, f ¼ (6.2 – 8.9) � 10�21 C for rat astrocyte membrane was

estimated (Petrov, 2006), which is a rather low value, but probably reason-

able in view of the lack of specific electromechanical activity of such cells.

According to the interrelation of the signs of pressure and voltage diVer-
ence (negative pressure producing negative voltage inside the pipette while

positive pressure producing a positive voltage), the sign of rat astrocyte

membrane flexocoeYcient was found negative.

3. Converse FlexoeVect of Native Membranes at Sine Electric Excitation

Electrically stimulated membrane motions in cells under whole‐cell volt-
age clamp were investigated first by using AFM (Mosbacher et al., 1998).

The patch pipette holding a HEK cell was attached to the tubular piezo

ceramic used for x, y, z scanning. Voltage‐clamped HEK293 cell membranes

under AC carrier stimulus of �10 mVpp with an AFM cantilever pressed

against the membrane moved the tip some nanometer normal to the plane of

the membrane. The holding potential Vh and the AC carrier voltage were

applied to the cell by the patch‐clamp amplifier (EPC 7). The cantilever

movement was translated into a voltage, Vdet, by the laser and quadrant

detector. The output was proportional to the height diVerence �h of the

surface. Frequency dependence of the voltage‐induced membrane move-

ments of six HEK cells normalized to the amplitude of the lowest frequency

was studied. The mean sensitivity at the lowest frequency was (0.15 � 0.05)

nm/mVpp (mean � SEM, n ¼ 6) (at a cantilever stiVness of 0.01 N/m). The

decrease of signal amplitude at higher frequencies was aVected by the detec-

tion system (resonance frequency 2 kHz). These movements tracked the

voltage at frequencies >1 kHz with a phase lead of 60	–120	, as expected

of a displacement current. Tip displacement was outward with depolariza-

tion, meaning a positive sign of flexocoeYcient. From the estimations made

in Mosbacher et al. (1998), one could infer a value of 10�19 C for the

flexocoeYcient of HEK293 membrane. This value is lower than the locust

muscle one, which is not surprising in view of the marked mechanoelectrical

behavior of the muscle membrane.

4. Converse FlexoeVect of Native Membranes at Pulsed Electric Excitation

Further experimental results using pulsed excitation were obtained (Zhang

et al., 2001). Experiments were performed with whole‐cell voltage‐clamped

HEK293 cells. The cell membranewas indented using theAFMcantilever of a
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modified Quesant Nomad AFM with a force of typically 0.5 nN. For each

experiment, the authors averaged 20 repetitions of the cantilever displacement

associated with hyperpolarizing or depolarizing pulses (from a holding po-

tential of –60 mV). The displacement was taken as the average of 5 ms about

the peak. Positive displacements represent the AFM moving into the cell.

Rectangular pulses of linearly increasing amplitude produced membrane

displacements in linear proportion to the voltage pulse amplitude (
1 nm/

100 mv) (Fig. 5). Hyperpolarizing the membrane would increase the local

curvature around the tip as it is moving inward, that is, positive sign of the

flexocoeYcient of HEK293 membrane as inMosbacher et al. (1998) would be

confirmed at normal ionic strength. Interestingly, a sign reversal was found at

lower ionic strengths of the bath, below 10 mM. It is important to note that

membrane movement and ionic current were uncorrelated, suggesting the

motor mechanism is not electroosmotic (cf. Fig. 5B and C).

Zhang et al. (2001) oVered an explanation of this novel finding in terms of

Lippmann equation for membrane tension in the presence of electric field.
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FIGURE 5 EVect of voltage on membrane movement of a patch‐clamped HEK 293 cell.

Steady‐state displacement vs command voltage. (A)–(C) show the membrane potential, ionic

current, and membrane movement from the same cell (average of 20 sweeps). (D) illustrates that

the movement is linear with voltage. From Snyder et al. (2002, Fig. 8, p. 448) with permission

from the authors and the publisher.
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While in a symmetrically charged membrane Lippmann eVect predicts ten-
sion changes that are quadratic with respect to transmembrane voltage,

Zhang et al. (2001) have shown for the first time that with asymmetrically

charged membranes the Lippmann tension that is a sum of the two interfa-

cial tensions displays a leading term that is linear with respect to the voltage,

thus resembling flexoelectricity.

Actually, flexoelectric torque by converse flexoeVect is roughly governed

by the diVerence of the two interfacial tensions rather than by their sum.

Such a diVerence will ultimately induce a surface torque that will curve the

membrane. The Poisson–Boltzmann type of treatment (Zhang et al., 2001)

shows that this diVerence will also be linear with voltage, thus providing a

model of the monopole contribution to the flexoeVect that depends on surface
charges alone. The actual symmetry of the AFM problem is such that both

tension and torque variations of the distended membrane will move the

AFM tip.

5. Flexoelectricity in Channel‐Containing Model and Native Membranes

Locust muscle membrane contains two types of voltage‐activated chan-

nels, as found in the studies of Kþ‐selective channels in the membrane of

adult locust muscle. The two types of Kþchannels of maximum conductance


150 pS (BK‐channel) and 
35 pS (IK‐channel) described by Gorczynska

et al. (1996) were found to be also stretch‐sensitive (Petrov et al., 1992;

Mellor et al., 1999). The IK‐channel displayed a monotonic reversible in-

crease of its open probability when the transmembrane pressure was raised

(Fig. 6). In contrast, during recordings from BK‐channels (observed only

under high Kþ concentration in the pipette), an increase of transmembrane

pressure triggered the channel to its open state in an irreversible (or only

slowly reversible), cumulative fashion (Fig.7).

In confirmation to the earlier results (Petrov et al., 1989), we have repeat-

edly observed in locust, patches containing these Kþ channels that are also

electrically gated, a dramatic amplification of direct flexoelectric response

during channel opening (Petrov et al., 1993) (Fig. 8). Channel opening was

aVected by applying transmembrane voltages larger than 20 mV, a property

characteristic of IK channels. Increasing in a stepwise manner, the holding

potential of the voltage clamp up to 50 mV we have observed, apart from the

instant jumps of flexocurrent on a fast time scale (inset, 40 mV), a steady

amplification of the first harmonic current amplitude of more than 50 times

on the slow time scale of minutes. Initial very low flexocurrent rms value of

5 fA can be fully recovered with holding potential brought back to zero, and

could be reamplified with larger negative holding potentials that also open

the IK channels. This striking eVect could be comprehended as a transition



FIGURE 6 (A–D) E Vect of pressure ramps on a cell ‐attached patch containing a single IK
channel. The pipette contained low‐K þ saline and the patch was held at Vpip ¼ 70 mV. (A) Data

from two pressure ramps of ‘‘0 torr to �50 torr to 0 torr.’’ The total duration of a ramp was 75 s,

that is, the rate of change of pressure was 1.33 torr/s. There were no rest periods between the

ramps. (B) Average patch current expressed as a function of pressure. Current data were

sampled into 380 pressure bins (0.13 torr each) and averaged over seven rising pressure ramps

(0 to �50 torr). The solid curve represents a fit by a Boltzmann function, with the P50% ¼ 23 torr.

(C) A plot of ln [ p0 /(l�p0 )] vs P. p0 was calculated by dividing the averaged current ( Fig. 6) by

the unitary channel current, Iunit ¼ 2.3 pA. The solid line represents a linear regression fit to the

data (slope ¼ 0.235 � 0.005 torr �1, correlation coeY cient ¼ 0.94). (D) Higher time resolution

traces from the rising phase of the second ramp in (A) at pressures of 
 –15, –30, and –50 torr.

Figure reprinted with kind permission of Springer Science and Business Media from Mellor,

I. R., Miller, B. A., Petrov, A. G., Tabarean, I., and Usherwood, P. N. R. (1999). Eur. Biophys.

J. 28, 346, Fig. 2. Copyright (1999) by the European Biophysical Societies’ Association.
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from detailed to global ne utralit y regim e of the mon opole flexopo larizatio n

during channel opening (Petrov, 1999): curvature‐induced transport of charges
along open channels and across the whole membrane thickness leaves each one

of the half‐spaces charged with respect to the other one and creates very large
dipoles, situated at the same time across the low dielectric constant membrane

core; therefore the enhancement of flexocoeYcient can reach two orders of

magnitude depending on the electric coupling parameter H (Petrov, 1999).
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Demonstration of the role of channels on the converse flexoeVect was

performed by transfecting HEK cells with voltage‐gated Kþ (Shaker) chan-

nels (Beyder, 2005). The voltage‐induced membrane deviations’ (VD) shape

of the Shaker‐transfected HEK cells (ShHEK) is notably diVerent than

the VD of wtHEK and AchR HEKs (Fig. 9). The diVerence can be seen

as a marked nonlinearity at the point of channel activation. For both on and

oV steps, in the hyperpolarized portion of the VD, ShHEK membrane



FIGURE 8 Amplification of flexocurrent ( If) during channel opening. Cell‐attached patch of
locust muscle membrane. The rms amplitude of If (lower trace) was recorded at various values of

Vhold (upper trace) on a slow time scale (note that time in this record runs from right to left).

Direct flexoresponse was driven by pressure oscillations of 10 torr(pp), 20 Hz. Pipette resistance

was 9 MO, seal resistance was 1 GO. Insets show pressure and flexocurrent in real time at

indicated holding potentials. Opening of Kþ channels occurred mainly at positive holding

potentials. Because of the relationship between flexopolarization and channel state, channel

openings and closings could be resolved at 40 mV by sudden changes of the amplitude of

flexocurrent. Figure reprinted with kind permission of Springer Science and Business Media

from Petrov, A. G., Miller, B. A., Hristova, K., and Usherwood, P. N. R. (1993). Eur. Biophys.

J. 22, 289. Copyright (1993) by the European Biophysical Societies’ Association.
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displ acement increa ses linea rly with the vo ltage step size and the force

clam p. However, from the voltag e where Sha ker ch annel activates (–40 to

–20 mV), the VD traces for the on an d oV steps take a strong turn and nearly
satur ate in displ acement (Fig. 9B). Such nonlinear ity was observed in 83%

(19/23) of the experi ments , and the experi ments lacki ng nonlinear behavior

wer e perfor med at lowest force clamp , where mechani cal noise often
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dominates the displacement recording. This nonlinear behavior was noted at

all force clamp values, down to 50 pN (Fig. 9A). This suggests that the

common linear increase in movement of the cantilever drastically diminishes

after the activation of Shaker channels.

The basic idea we oVer here for explanation of these results is that open

channels switch the regime of flexoelectric polarization from detailed to

global electric neutrality (detailed electric neutrality: each halfspace on both

sides of the membrane is neutral in itself; global electric neutrality: both

halfspaces are oppositely charged with respect to one another). In the case of

converse flexoeVect, detailed and global neutrality regimes should be dis-

cussed with respect to membrane‐related charges only, that is, charges that

are producing the electric field should not be considered. Open channels permit

the transfer of charges from one side to the other, thus induced polarization

could be quite large as opposite charges are separated by a large distance

(membrane thickness) and by a low dielectric constant layer (hydrophobic

membrane core). We have to admit in addition that a low area density of open

channels will result in strict global neutrality conditions not over entire mem-

brane area, but just over small portion of it, which will then be spreadwith time

over the whole membrane area due to equipotentiality. However, this may

be enough to explain the observed saturation (on the average) of the electric‐
induced curvature, in view of the fact that global flexocoeYcient is some

30 times larger than the detailed one, and of opposite sign (see Petrov, 1999,

Sections 6.5.1 and 6.5.2).
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As Eq. (10) demonstrates, the ratio of monopole contribution at global

neutrality vs monopole contribution at detailed neutrality is:

fMB

f CB
¼ � ew

eL

d2

2lDdð1þ lD=dÞ ¼ � 30

2

5

2 � 1 � ð1þ 1=5Þ ¼ � 150

4:8
¼ �31:25

Closed channel:

f closed ¼ f DB þ f CB

Open channel: locally opposite and strong polarizations of the channels and

their close surrounding area will be spread over the whole membrane area

due to the equipotential condition for the electrolyte halfspace. Average

flexocoeYcient:

f open;av ¼ ð1� aÞð f DB þ f CBÞ � aj fMBj;

where a is the relative portion of the area around channels per unit area.

Now, since f open, av ffi 0, it follows that a ffi 1/30.
V. FLEXOELECTRICITY AND MECHANOTRANSDUCTION

As we have seen, flexoelectricity is a fundamental property of liquid crys-

tals, relating their mechanical and electrical degrees of freedom. In a mem-

brane system with just these two degrees of freedom, we can encounter

flexoelectric eVects discussed above, direct and converse ones. In membranes

(living and model), flexoelectricity provides a linear relationship between

membrane curvature and membrane polarization, or transmembrane voltage

and membrane‐bending stress. It is thus closely related to mechanosensitivity

and mechanotransduction, basic features of all living systems.

Currently, mechanosensitivity of membranes is supposedly related to the

presence of mechanosensitive channels in them. In hair cells, although no

specific mechanosensitive channel has been identified, much is known about

the channel’s location and the cytoskeletal proteins involved in its gating and

adaptation (Garcia‐Añoveros and Corey, 1997; Gillespie and Walker, 2001).

In particular, the channels are located at the tips of a hair cell’s stereocilia,

whose core filaments are composed of cross‐linked actin. Extracellularly, the

channels are linked by an unidentified protein or protein complex known as

the tip‐link, which is normally under tension; it is ‘‘prestressed,’’ much like a

tuned violin string. When the stereocilia are deflected in response to sound

vibrations, the tip‐link (or an associated protein at the base of the tip‐link)
becomes stretched, and the resulting increase in tension opens the channel.
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Earli er, a di Verent model using direct flexoe lectric e V ect for trans forma-

tion of mechani cal into electrica l energy in the he aring process in ster eocilia

was propo sed (Pet rov and Usher wood, 1994 ). Unlike mechani sms involv ing

spec ialized struc tures like stre ss ‐ activated channels, flexo electricity may well

ope rate in ch annel ‐ free membr ane regions, althoug h its co mbination with

ion chan nels brings about some inter esting new possibili ties (see abov e).

We concen trated our attention on the ster eocilia tips (Fi g. 10 ). These are

high ly cu rved membr ane regions : with a stereocil ium diame ter of 300 nm

(afte r Passech nik, 1988 ) the tip curvat ure 2/R amounts to 13 � 10 6 m � 1.

Duri ng oscillation s of a ster eocilium in an excit atory direction, this curvat ure

woul d increa se be cause of the pull by the tip ‐ link, respectivel y, de creasing in
the inhibitory direction. Ass uming a curvatu re varia tion of only 10% and a

fle xocoe Y cient of only 1 0�20 C, a 1.5 mV oscillat ion ampli tude of the mem-

bran e pot ential may be ca lculated from Eq. (2) for a single ster eocilium. The

gen eration of such flexoelect ric potential is con centra ted in the tip region.
FIGURE 10 A model for applying stress to the membranes of stereocilia in hair cells. The

left panel shows how tilting of the bundle of cilia to the left (excitatory excursion) leads to

stretching of the membranes because of the pull by the tip‐links. This observation is supposedly
related to the stress‐sensitive channel functioning. The right panel shows that the tip curvature
under excitatory/inhibitory tilt is increased/decreased, while the cilia shaft membrane corruga-

tion is decreased/increased. The implications of these observations in the flexoelectric sensing

mechanism is discussed in the text. Figure reprinted with kind permission of Springer Science

and Business Media from Petrov, A. G., and Usherwood, P. N. R. (1994). Eur. Biophys. J. 23, 1,

Fig. 3. Copyright (1994) by the European Biophysical Societies’ Association.
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There is experimental evidence that this region is the site of themechanoelectric

transducer (Hudspeth, 1982, 1983). Further, the shaft of the stereocilium

membrane is corrugated at rest (Passechnik, 1988), but the folds would disap-

pear because of the pull during excitatory excursions (Fig. 10, right). Thus, an

additional source of flexoelectric potential could be recognized, with a compa-

rablemagnitude of that of the tip region, but with an opposite phase. The value

of 1.5 mV favorably compares to the known values of the hair cell sensitivity of

(2–4) � 105 V/m (Howard et al., 1988), which yields a few millivolts change of

the membrane potential at 10‐nm displacement.

The flexoelectric generators of all stereocilia are in parallel, so their total

e.m.f. would remain the same. However, the generated flexoelectric (dis-

placement) current (being proportional to the membrane area) would in-

crease in proportion to the number of stereocilia being activated in concert.

With a tip area of 2pR ¼ 1.4 � 10�9 and a broadly accepted value of specific

biomembrane capacity of 1 F/cm2, the displacement current equation

[Eq. (12)] gives, at 1000‐Hz vibration frequency and a flexoelectric potential

amplitude of 1.5 mV, a flexoelectric current amplitude of 13 fA per stereo-

cilium, that is, 1.3 pA for a bunch of 100 stereocilia. This is a lower estimate

in view of the possible additional flexoelectric current generated along the

shaft of the stereocilium (see also below). The flexoelectric displacement

current is of greatest interest with high frequency stimuli, when it is largest,

and when its linear growth with frequency would overcome the frequency‐
dependent decrease in amplitude of the imposed displacement of the stereo-

cilium. In the low frequency region, the conductive component of the current

becomes important, its value being directly dependent on the conducting

state of the ion channels of the stereocilium membrane (Fig. 8).

Regarding converse flexoelectric eVect involvement in mechanotransduc-

tion, Petrov and Usherwood (1994) have predicted: ‘‘Thus, further exciting

possibilities for the participation of flexoelectricity in the active process of

mechanoamplification may be discussed, inspired in particular by the fact

that the curvature‐generating flexoelectric mechanism may be fast enough.

By pointing out these possibilities we hope closer attention will be paid to

them in future studies of the functioning of hair cells.’’

The converse flexoeVect into question was employed by Raphael et al.

(2000) for description of the electromotility of outer hair cell (OHC) mem-

brane (Fig. 11). Electromotility plays a central role in the process of mechan-

oamplification, which is vital for the hearing of high frequency sounds

(Passechnik, 1988; Brownell et al., 2001).

The OHC displays a repetitive arc and pillar nanoarchitecture, containing

sharp points at the confluence of any two adjacent arcs (Fig. 11). This architec-

ture is inherently polar and serves well the flexoelectric mechanism (e.g., a

sine wave membrane shape will not do much in flexoelectric respect: while
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FIGURE 11 Nanomechanical model for OHC converse flexoeVect. (A) A schematic of the

OHC. These cells are cylindrically shaped with lengths ranging from 20 to 90 mm along the cochlea

and with a radius of 4–5 mm. The hair bundle, composed of stereocilia, is located at the apex of the

cell. The lateral wall is the source of electromotility and it appears smooth under a light micro-

scope. When examined with electron microscopy, the lateral wall appears corrugated. The folds in

the membrane appear to terminate at pillar proteins that extend to the cytoskeleton. The cytoskel-

eton is composed of actin filaments crosslinked by spectrin molecules. (B) Curvature changes in the

elemental motile unit cause extension of the spectrin molecules attached to the pillar proteins.

Three units are shown in the figure. A membrane depolarization (þ) leads to a decrease in the

radius of curvature and a shortening of the cell while hyperpolarization (�) leads to an increase of

the radius of curvature and cell lengthening. Figures reprinted with kind permission of the authors

and the publisher from Raphael, R. M., Popel, A. S., and Brownell, W. E. (2000). Biophys. J. 78,

2844, Fig.1 and Fig. 2. Copyright (2000) by the Biophysical Society.
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one of the halfwaves is reduced the opposite one will be extended, and vice

versa). Such an arc motive is repeated a few thousand times along the OHC cell

membrane; this is how a nanometer displacement of the end of any single arc is

amplified by three orders of magnitude resulting in a micrometer di sp la ce me nt

of the cell end. Membrane arcs are also found in several other electromotile

cells, for example, Oscillatoria, Flexibacter BH3 (Br ow ne ll , 2 00 1). This makes a

membrane arc terminating on protein pillars, a basic nanoscale unit of a unique

linear flexoelectric motor.

Inter estingly, on a micr oscopic scale this motor look s like a piezo-

elect ric one, that is, a ch ange of cell elon gation due to a ch ange of mem-

bran e potenti al. Indeed , the idea that OHC possesses piezo electric

pro perties has been advanced by Iwa sa (2001) and Dong et al. (2002) .
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However, such an apparent piezomotor features an enormously eVective
piezocoeYcient, c12 ¼ 20,000,000 � 10�12 C/N, which has no analogue in

organic or other materials (the best piezoelectric ceramic PZT has c12¼ 400�
10�12 C/N only). We have been able to explain the apparent OHC piezoelec-

tricity in terms of the Raphael et al. (2000) model, thus showing that even a

very weak membrane flexoelectricity on a nanolevel, of f ¼ 1.10�21 C,

combined with a thousand times repetition of the elemental motile unit, is

capable to produce the huge apparent piezoelectricity of OHCon amicrolevel

(Petrov, 2003, 2006).

Brownell (2006) claims: ‘‘The fundamental motor unit in the flexoelectric

based model for OHC somatic electromotility are circumferential plasma

membrane ripples organized by cortical lattice F‐actin. If evolution followed

the suggested scenario, the ripples represent a morphed version of the

stereocilium motor units of the bundle amplifier. In both cases a voltage‐
driven change in membrane curvature generates mechanical force. Depolar-

ization leads to bending of the bundle toward the tallest row and to

shortening of the soma. Both of which could be working in concert for the

high frequency requirements of the mammalian cochlear amplifier.’’

One eventual consequence of this claim that would further enlarge

the domain of bioflexoelectricity is to test whether ripples of muscle fiber

membrane display the same pillar and arc nanoarchitecture like OHC.
VI. CONCLUSIONS

The process of mechanotransduction in membranes seems to benefit not

only from specialized and localized elements like stress‐activated channels,

but also from the collective properties of the mechanosensitive membranes

as a whole. These collective properties evolve from the liquid crystal charac-

ter of membranes and are best understood in terms of liquid crystal physics

(Petrov, 1999). Among them, curvature elasticity and flexoelectricity hold

the first places. They ensure an eVective and direct way of transformation of

mechanical energy of the whole membrane into electrical one and vice versa.

In doing so, both the lipid bilayer part of the membrane and the cytoskeleton

of a special architecture are vital. The localized protein structures like mem-

brane channels are obviously able to interact with global membrane proper-

ties in a striking way that is not fully understood. By confirming the existing

concepts of membrane flexoelectricity in other cell types and by the eventual

discovering of new concepts our exciting flexoelectric journey in the world of

mechanoperception can proceed further and can reveal new important facets

of the problem.



148 Alexander G. Petrov
References
Beyder, A. (2005). Electro‐Mechanics on the Cell Surface. Ph.D. Thesis, State University of

New York at BuValo.

Brehm, P., Kullberg, R., and Moody‐Corbett, F. (1984). Properties of non‐junctional acetyl-
choline receptor channel on innervated muscle of Xenopus laevis. J. Physiol. 350, 631–648.

Brownell, W. E. (2001). Membrane based motor mechanisms. In ‘‘1st World Flexoelectric

Congress.’’ SUNY‐BuValo.
Brownell, W. E. (2006). The piezoelectric outer hair cell: Bidirectional energy conversion in

membranes. In ‘‘Auditory Mechanisms: Processes and Models’’ (A. L. Nuttall, P. Gillespie,

T. Ren, K. Grosh, and E. de Boer, eds.), pp. 176–186. World Scientific, Singapore.

Brownell, W. E., Spector, A. A., Raphael, R. M., and Popel, A. S. (2001). Micro‐ and

nanomechanics of the cochlear outer hair cell. Annu. Rev. Biomed. Eng. 3, 169–194.

De Gennes, P. G. (1974). ‘‘The Physics of Liquid Crystals.’’ Clarendon Press, Oxford.

Derzhanski, A. (1989). Curvature induced polarization of bilayer lipid membrane. Phys. Lett.

139A, 170–173.

Dong, X.‐X., Ospeck, M., and Iwasa, K. H. (2002). Piezoelectric reciprocal relationship of the

membrane motor in the cochlear outer hair cell. Biophys. J. 82, 1254–1259.
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